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INTRODUCTION

The Institute of Physics New Quantum  Curriculum
(quantumphysics.iop.org) consists of online texts and interactive
simulations with accompanying activities for an introductory
course in quantum mechanics starting from two-level systems.
This approach immediately immerses students in the concepts of
guantum mechanics by focusing on experiments that have no
classical explanation. It allows from the start a discussion of the
physical interpretations of quantum mechanics and recent
developments such as quantum information theory. Texts have
being written by researchers in quantum information theory and
foundations of quantum mechanics. One of us (AK) designed the
interactive simulations and activities (17 in total) that are part of
this resource.

The New Quantum Curriculum simulations make use of principles
of interface design from previous studies'®. Activities were
designed to promote guided exploration and sense-making. Aims
of this study were to optimize the simulations and activities in
terms of clarity, ease-of-use, promoting exploration, sense-making
and linking of multiple representations. We also aimed to optimize
the link between the simulations and activities.

METHODOLOGY

We conducted 38 hours of observation sessions with 17 student
volunteers from the University of St Andrews Quantum Physics
course (roughly equivalent to US sophomore Modern Physics). In
these sessions, students first freely explored a simulation and then
worked on the activity associated with the simulation, in both case
thinking aloud and describing what they were investigating and
explaining what they understood or found confusing. They then
answered survey questions and reflected on their experience.
Sessions were audiorecorded with screencapture. We were able to
trial all simulations and activities excepting one (16 in total) in
these sessions, with 1 to 5 students interacting with each
simulation. For a number of simulations there was sufficient time
between trials for us to implement changes prior to testing the
simulation with subsequent students. Where needed, we
implemented changes to activities between trials.

We also used three simulations in the Quantum Physics course,
two in computer classroom workshops and one as a homework
assignment. We used two simulations as homework assighments
in the University of Colorado Boulder Modern Physics course.
Analysis of difficulties was used to optimize the simulations,
activities and the links between them. Revisions were incorporated
into all simulations and activities wherever applicable.

FUTURE STEPS

We will be conducting further observation studies and evaluation
in courses at multiple institutions in the coming year. We plan
further refinements to simulations and activities from outcomes of
this evaluation. We will also be creating additional activities for the
simulations that are more exploratory and promote student
discussions and collaboration. For these activities, we wish to carry
out observation sessions with students collaboratively working
with the simulations.
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We revised the activities to help students make better connections
between multiple representations and better links with the
simulations, using formulations such as

“Using the simulation, come up with a general rule ...”,

“Explain how these calculations relate to the experimental
observations in the simulation ...”,

“Explain how you can see these results graphically in the
simulation.” etc.

For more complicated simulations such as the hidden variable
simulations, we provided additional scaffolding in the activities.
For example, we asked students to explain how hidden variable
and quantum theory differed in their explanations of the
experimental outcomes shown.
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